0040-4039/80/0208-0631\$02.00/0

PREPARATION AND SYNTHETIC USE OF THE ZEROVALENT NICKEL COMPLEX BY ELECTROCHEMICAL REDUCTION

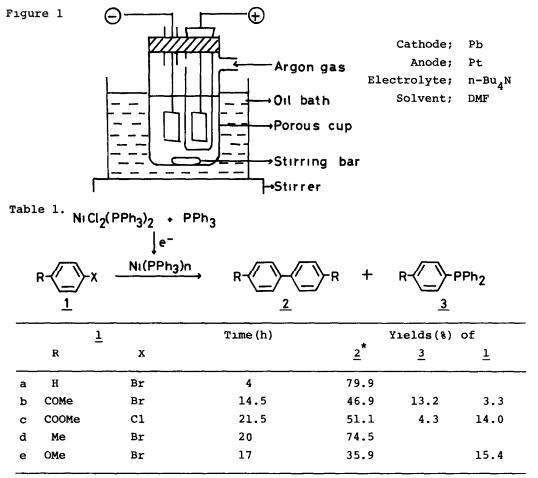
Miwako Mori, Yasuko Hashimoto and Yoshio Ban[®] Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Summary: The generation of Ni(PPh₃)₄ by electrochemical reduction was carried out in a divided cell containing NiCl₂(PPh₃)₄, PPh₃ and n-Bu₄NBr in DMF with a lead plate as cathode and a platinum plate as anode under the stream of argon at 60°. Using this Ni(PPh₃)₄, biphenyls and the heterocyclic compounds were synthesized in fairly good yields.

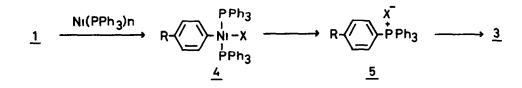
Synthetic utility of the zerovalent nickel complex is now generally recognized, which involves, for example, the synthesis of biphenyls,¹ the generation of π -allylnickel compounds,² and the synthesis of arylnickel or vinylnickel complex.³ We have already reported the synthesis of heterocyclic compounds via arylnickel complexes,⁴ for which the zerovalent nickel complex[Ni(PPh₃)₄] was prepared by the known methods,⁵ but the simplification of those methods was desired. In order that the divalent nickel complex should be reduced to the zerovalent nickel complex, the electrochemical process might be considered.

 $N_1^{II} \xrightarrow{e} N_1^{I} \xrightarrow{e} N_1^{0}$

Although several methods⁶ have been already reported due to this idea, they are not suitable for our synthetic purpose. Now we report the new electrochemical method of preparation of $Ni(PPh_3)_n$, and the synthesis of biphenyls and the heterocyclic compounds using this zerovalent nickel complex. A typical procedure is shown in the following.


A mixture of NiCl₂ (PPh₃)₂ (326.5 mg, 0.5 mmol), PPh₃ (262 mg, 1.0 mmol) in DMF (8 ml) containing n-Bu₄NBr(0.1 M solution) as supporting electrolyte in a divided cell was electrolyzed with a lead plate as cathode and a platinum plate as anode as shown in Figure 1. During the current was passed under the stream of argon at 60°, the color varied from initially blue to red. After 2F/mol had been passed, the electrodes were withdrawn and then p-bromotoluene(85.5 mg, 0.5 mmol) in DMF(3ml) was added under the stream of argon. The whole mixture was warmed at 65° under an atmosphere of argon for 20 h to give 4,4'-dimethylbiphenyl[33.9 mg, 74.5%, mp 110-111°(1it. 112°)^{1b}].

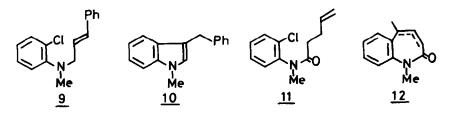
The same treatment of various halobenzenes gave the corresponding biphenyls in addition to a small amount of phosphine derivatives (3) as shown in Table 1. The latter compound (3) must be obtained from the phosphonium salt (5) through the


631

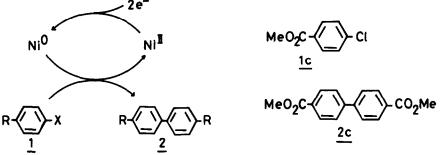
Scheme 1.⁷ These results suggest that N1(PPh₃)_n generated by electrochemical reduction is effective for the synthesis of biphenyls.

On the other hand, the synthesis of oxindole derivatives from o-chloroaniline derivatives using Ni(PPh₃)_n was already reported by us, ^{4a,b} in which the zero-valent nickel complex was prepared from Ni(acac)₂ and AlEt₃, or NiCl₂(PPh₃)₂ and Zn in the presence of PPh₃.

* The melting point of each biphenyl agreed with those of the literature.^{1b} Scheme 1.



synthesis of these oxindole derivatives using Ni $(PPh_3)_n$ by previous electrochemical reduction was tried, on which the compound $(\underline{6a})$ was added to the DMF solution containing Ni $(PPh_3)_n$ generated by electrochemical reduction of NiCl₂ $(PPh_3)_2$ in the presence of PPh₃ in the same manner as the synthesis of biphenyls. The whole mixture was warmed at 70° for 4 h to give the expected oxindole derivatives (7a', 45.4%, 7a", 9.8%, 8a, 7.6%, respectively) in addition to the starting material ($\underline{6}$, 27.7%). These results are summarized in Table 2.


le 2		NiCl ₂ (PPh ₃) ₂	$ \begin{array}{c} \bullet PPh_3 \\ \downarrow e^- \\ \hline (PPh_3)n \\ \hline \bullet p \\ \hline \end{array} $	R ₃		~R ₃
.1	<u>6</u> R ₂		PI	$R_2 \underline{7}$	' <u>8</u> ^R 2	
		Me 7	$\frac{Ph}{Me} = \frac{7}{2}$			
		<u></u>	<u>a' Me 7</u>	- Yıel	.ds(%) of	
	R ₁		< <u>∽</u> γ ^k ο		.ds(%) of <u>8</u>	<u>6</u>
		<u></u>	<u>a' Me 7</u>	- Yıel	8	<u>6</u> 27.7
a b		<u>6</u> R ₂ Me	<u>a' Me 7</u>	Yiel <u>7</u>	<u>8</u>	
	Н	<u>6</u> R ₂	$\frac{1}{R_3}$	Yıel <u>7</u> 54.8(65.9) [*]	<u>8</u> 7.6	

* The yields of oxindole derivatives using Ni(PPh₃) prepared by chemical method were shown in parentheses.^{4a,b}

Subsequently, a solution containing NiCl₂(PPh₃)₂, PPh₃, n-Bu₄NBr and the compound (<u>9</u>) or (<u>11</u>) were electrolyzed under a controlled potential of -1.9V, in which a platinum wire was used as a reference electrode.^{6a} After 2F/mol was passed, an expected indole(<u>10</u>, 35.1%) or benzazepinone derivative(<u>12</u>, 13.9%) was obtained.

In line with this idea, the current was passed at 65° under a controlled potential of -1.9V to a DMF solution containing NiCl₂ (PPh₃)₂ (0.1 mmol), PPh₃ (0.2 mmol), methyl p-chlorobenzoate($\underline{1c}$, 0.5 mmol) and n-Bu₄NBr(0.1 M solution). After 2.0 F/mol was passed, 4,4'-dicarbomethoxybiphenyl($\underline{2c}$) was obtained in the yield of 44.4%.

The preparation of $Ni(PPh_3)_n$ by electrochemical reduction has been turned out to be a very useful synthetic tool since handling is very easy and a reducing reagent is not present in the reaction medium.

Further studies are in progress.

ACKNOWLEDGEMENT: This work was supported by a Grants-in-Aid for Scientific Research (No. 303023, 36375) from the Ministry of Education, Science and Culture, Japan, which are gratefully acknowledged.

REFERENCES :

- a) M. F. Semmelhack, J. Am. Chem. Soc., <u>93</u>, 5908 (1971). b) A. S. Kend,
 L. S. Liebeskind and P. M. Braitsch, <u>Tetrahedron Lett.</u>, 3375 (1975).
- 2. M. F. Semmelhack, <u>Organic Reaction</u>, Vol. <u>19</u>, p 115 (1972), by John Wiley and Sons. Inc.
- 3. a) M. Hidai, T. Kashiwagi, T. Ikeuchi and Y. Uchida, <u>J. Organometal. Chem.</u>, <u>30</u>, 279 (1971). b) J. Chatt and B. L. Shaw, <u>J. Chem Soc.</u>, <u>1960</u>, 1718.
 c) J. R. Moss and B. L. Shaw, <u>J. Chem. Soc.</u>, <u>1963 A</u>, 1793.
- 4. a) M. Mori and Y. Ban, <u>Tetrahedron Lett.</u>, 1803, 1807 (1976). b) M. Mori and Y. Ban, <u>Heterocycles</u>, <u>9</u>, 391 (1978). c) M. Mori, S. Kudo and Y. Ban, J. Chem. Soc. Perkin Transactions 1, 1979, 771.
- 5. a) R. A. Schun, <u>Inorg. Synth.</u>, <u>13</u>, 124 (1972). b) G. Wilke, <u>Angew. Chem.</u>, <u>72</u>, 581 (1960).
- 6. a) H. Lehmkuhl, W. Leuchte and W. Elsenbach, <u>Liebigs Ann. Chem.</u>, <u>1973</u>, 692.
 b) M. Troupel, Y. Rollin, C. Chevort, F. Pfluger and J-F. Fauvarque, <u>J. Chem.</u> <u>Research(S)</u>, <u>1979</u>, 50. c) C. Gosden, K. P. Healy and D. Pletcher, <u>J. Chem.</u> <u>Soc. Dalton</u>, <u>1978</u>, 972. d) K. P. Healy and D. Pletcher, <u>J. Organometal.</u> <u>Chem.</u>, <u>161</u>, 109 (1978).
- 7. T. T. Isou and J. K. Kochi, J. Am. Chem. Soc., 100, 1634 (1978).

(Received in Japan 20 November 1979)